経済学で出る数学
ワークブックでじっくり攻める:問 3.43
【解答 3.43】
-
$L=\left(\dfrac{r{\alpha}}{w{\beta}}\right)^{\frac{\beta}{{\alpha}+{\beta}}}x^{\frac{1}{{\alpha}+{\beta}}}$,
$K=\left(\dfrac{w{\beta}}{r{\alpha}}\right)^{\frac{\alpha}{{\alpha}+{\beta}}}x^{\frac{1}{{\alpha}+{\beta}}}
$ に対して,
\begin{align}
L^{\alpha}K^{\beta}&=
\left(\dfrac{r{\alpha}}{w{\beta}}\right)^{\frac{\alpha\beta}{{\alpha}+{\beta}}}x^{\frac{\alpha}{{\alpha}+{\beta}}}
\left(\dfrac{w{\beta}}{r{\alpha}}\right)^{\frac{\alpha\beta}{{\alpha}+{\beta}}}x^{\frac{\beta}{{\alpha}+{\beta}}}\\
&=\left(\dfrac{r{\alpha}}{w{\beta}}\right)^{\frac{\alpha\beta}{{\alpha}+{\beta}}}
\left(\dfrac{r{\alpha}}{w{\beta}}\right)^{-\frac{\alpha\beta}{{\alpha}+{\beta}}}
x^{\frac{\alpha}{{\alpha}+{\beta}}}x^{\frac{\beta}{{\alpha}+{\beta}}}\qquad 第2項を逆数にするのがポイント\\
&=\left(\dfrac{r{\alpha}}{w{\beta}}\right)^{\frac{\alpha\beta}{{\alpha}+{\beta}}-\frac{\alpha\beta}{{\alpha}+{\beta}}}x^{\frac{\alpha +\beta}{{\alpha}+{\beta}}}\\
&=\left(\dfrac{r{\alpha}}{w{\beta}}\right)^0x=x
\end{align}
-
$\left\{
\begin{array}{c@{\;}c@{\;}l}
w&=&\displaystyle \frac{p}{3}L^{-\frac{2}{3}}K^{\frac{1}{3}}\\[2mm]
r&=&\displaystyle \frac{p}{3}L^{\frac{1}{3}}K^{-\frac{2}{3}}
\end{array}
\right.$
に対して,
\begin{align}
w^2r&=\left(\frac{p^2}{3^2}L^{-\frac{4}{3}}K^{\frac{2}{3}}\right)\left(\frac{p}{3}L^{\frac{1}{3}}K^{-\frac{2}{3}}\right)\\
&=\frac{p^3}{3^3}L^{-\frac{4}{3}+\frac{1}{3}}K^{\frac{2}{3}-\frac{2}{3}}\\
&=\frac{p^3}{3^3}L^{-1}
\end{align}
\begin{align}
wr^2&=\left(\frac{p}{3}L^{-\frac{2}{3}}K^{\frac{1}{3}}\right)\left(\frac{p^2}{3^2}L^{\frac{2}{3}}K^{-\frac{4}{3}}\right)\\
&=\frac{p^3}{3^3}L^{-\frac{2}{3}+\frac{2}{3}}K^{\frac{1}{3}-\frac{4}{3}}\\
&=\frac{p^3}{3^3}K^{-1}
\end{align}
- 例題7.6の解答例参照.
【問 3.43終わり】
解答例一覧へ