経済学で出る数学
ワークブックでじっくり攻める:問7.2解答例
【解答 7.2】
-
- $\dfrac{\partial f}{\partial x}(x,y)=3\times 2xy^4=6xy^4$
- $\dfrac{\partial f}{\partial y}(x,y)=3x^2\times(4y^3)=12x^2y^3$
-
- $\dfrac{\partial f}{\partial x}(x,y)=4\times 3x^2y=12x^2y$
- $\dfrac{\partial f}{\partial y}(x,y)=4x^3\times 1=4x^3$
-
- $\dfrac{\partial f}{\partial x}(x,y)=1\times y +1+0=y+1$
- $\dfrac{\partial f}{\partial y}(x,y)=x\times 1 +0+1=x+1$
-
- $\dfrac{\partial f}{\partial x}(x,y)=4x+2\times 1\times y+0-6-0
=4x+2y-6$
- $\dfrac{\partial f}{\partial y}(x,y)=0+2x\times 1+2y-0-4=2x+2y-4$
-
- $\dfrac{\partial f}{\partial x}(x,y)=2x+4\times 1 \times y+0-2+0+0
=2x+4y-2$
- $\dfrac{\partial f}{\partial y}(x,y)=0+4x\times 1+18y-0+6-0=4x+18y+6$
-
- $\dfrac{\partial f}{\partial x}(x,y)=3x^2-0-3+0=3x^2-3$
- $\dfrac{\partial f}{\partial y}(x,y)=0-3y^2-0+12=-3y^2+12$
-
- $\dfrac{\partial f}{\partial x}(x,y)=\left(\alpha x^{\alpha-1}\right)y^{\beta}=\alpha x^{\alpha-1}y^{\beta}$
- $\dfrac{\partial f}{\partial y}(x,y)=x^{\alpha}\left(\beta y^{\beta-1}\right)=
\beta x^{\alpha}y^{\beta-1}$
-
- $\dfrac{\partial f}{\partial x}(x,y)
=\left(\dfrac{1}{2} x^{-\frac{1}{2}}\right)y^{\frac{1}{2}}
=\dfrac{1}{2} x^{-\frac{1}{2}}y^{\frac{1}{2}}$
- $\dfrac{\partial f}{\partial y}(x,y)=
x^{\frac{1}{2}}\left(\dfrac{1}{2} y^{-\frac{1}{2}}\right)
=\dfrac{1}{2} x^{\frac{1}{2}}y^{-\frac{1}{2}}$
-
- $\dfrac{\partial f}{\partial x}(x,y)
=\left(\dfrac{1}{3} x^{-\frac{2}{3}}\right)y^{\frac{2}{3}}
=\dfrac{1}{3} x^{-\frac{2}{3}}y^{\frac{2}{3}}$
- $\dfrac{\partial f}{\partial y}(x,y)=
x^{\frac{1}{3}}\left(\dfrac{2}{3} y^{-\frac{1}{3}}\right)
=\dfrac{2}{3} x^{\frac{1}{3}}y^{-\frac{1}{3}}$
-
- $\dfrac{\partial f}{\partial x}(x,y)=e^x+1\times \log_{}{y}=
e^x+\log_{}{y}$
- $\dfrac{\partial f}{\partial y}(x,y)=0+x\times\dfrac{1}{y}
=\dfrac{x}{y}$
-
- $\dfrac{\partial f}{\partial x}(x,y)=\dfrac{\alpha}{x}+0
=\dfrac{\alpha}{x}$
- $\dfrac{\partial f}{\partial y}(x,y)=0+\dfrac{1-\alpha}{y}
=\dfrac{1-\alpha}{y}$
-
- $\dfrac{\partial f}{\partial x}(x,y)=e^y\times \dfrac{1}{x}
=\dfrac{e^y}{x}$
- $\dfrac{\partial f}{\partial y}(x,y)=e^y\times \log_{}{x}
=e^y\log_{}{x}$
-
- $\dfrac{\partial f}{\partial x}(x,y)=
\dfrac{(xy)^{\prime}(x+y)-(xy)(x+y)^{\prime}}{(x+y)^2}
=\dfrac{(y)(x+y)-(xy)(1+0)}{(x+y)^2}
=\dfrac{yx+y^2-xy}{(x+y)^2}=\dfrac{y^2}{(x+y)^2}$
- $\dfrac{\partial f}{\partial y}(x,y)=
\dfrac{(xy)^{\prime}(x+y)-(xy)(x+y)^{\prime}}{(x+y)^2}
=\dfrac{(x)(x+y)-(xy)(0+1)}{(x+y)^2}
=\dfrac{x^2+xy-xy}{(x+y)^2}=\dfrac{x^2}{(x+y)^2}$$
-
- $\dfrac{\partial f}{\partial x}(x,y)=
\dfrac{(2xy)^{\prime}(x+y)-(2xy)(x+y)^{\prime}}{(x+y)^2}
=\dfrac{(2y)(x+y)-(2xy)(1+0)}{(x+y)^2}
=\dfrac{2yx+2y^2-2xy}{(x+y)^2}=\dfrac{2y^2}{(x+y)^2}$
- $\dfrac{\partial f}{\partial y}(x,y)=
\dfrac{(2xy)^{\prime}(x+y)-(2xy)(x+y)^{\prime}}{(x+y)^2}
=\dfrac{(2x)(x+y)-(2xy)(0+1)}{(x+y)^2}
=\dfrac{2x^2+2xy-2xy}{(x+y)^2}=\dfrac{2x^2}{(x+y)^2}$$
【問 7.2 終わり】
【メモ】
13.と14.では誤解を恐れず「'」(プライム)記号を用いた.どちらの変数で微分しているのかに,注意すること.
【メモ 終わり】
解答例一覧へ