経済学で出る数学
ワークブックでじっくり攻める:応用問題
CES支出関数.
【問】 次の最小化問題について答えなさい.ただし ${\alpha}, {\beta} > 0, {\rho} < 1$ とする.
\begin{align}
\min_{x,y} & (px+qy)
\\[2ex]
s.t. &u=\left\{{{\alpha}}(x)^{\rho}+{{\beta}}(y)^{\rho}\right\}^{\frac{1}{\rho}}
\end{align}
支出関数$E(p,q,u)$を求めなさい.
【解答】
- ラグランジュ関数を作ると,
\[
{\cal L}(x,y,\lambda )=
px+qy+{\lambda}[u-[{\alpha}x^{\rho}+{\beta}y^{\rho}]^{\frac{1}{\rho}}]
\]
-
各変数で偏微分してイコールゼロとおくと,
\[
\left\{
\begin{align}
0=&p-{\lambda}{\alpha}[{\alpha}x^{\rho}+{\beta}y^{\rho}]^{\frac{1}{\rho}-1}x^{\rho -1}
\qquad (1)\\[2ex]
0=&q-{\lambda}{\beta}[{\alpha}x^{\rho}+{\beta}y^{\rho}]^{\frac{1}{\rho}-1}y^{\rho -1}
\qquad (2)\\[2ex]
0=&u-[{\alpha}x^{\rho}+{\beta}y^{\rho}]^{\frac{1}{\rho}}\qquad (3)
\end{align}
\right.
\]
-
あとは工夫して解く.$(1)\div(2)$ から,
$\Bigl(\dfrac{x}{y}\Bigr)^{\rho -1}=\dfrac{\beta}{\alpha}\cdot\dfrac{p}{q}$.
\begin{eqnarray*}
x&=&\Bigl(\frac{\beta p}{\alpha q}\Bigr)^{\frac{1}{\rho -1}}y,\\
y&=&\Bigl(\frac{\alpha q}{\beta p}\Bigr)^{\frac{1}{\rho -1}}x,
\end{eqnarray*}
これを$(3)$に代入すると
\begin{eqnarray*}
u&=&\Bigl[{\alpha}x^{\rho}
+{\beta}\Bigl(\frac{\alpha q}{\beta p}\Bigr)^{\frac{\rho}{\rho -1}}x^{\rho}\Bigr]
^{\frac{1}{\rho}}\\
&=&\Bigl[x^{\rho}p^{\frac{-\rho}{\rho -1}}{\alpha}p^{\frac{\rho}{\rho -1}}
+x^{\rho}p^{\frac{-\rho}{\rho -1}}{\beta}
\Bigl(\frac{\alpha q}{\beta}\Bigr)^{\frac{\rho}{\rho -1}}
\Bigr]^{\frac{1}{\rho}}\\
&=&xp^{\frac{-1}{\rho -1}}
\Bigl[{\alpha}p^{\frac{\rho}{\rho -1}}
+\Bigl(\frac{\alpha q}{\beta}\Bigr)^{\frac{\rho}{\rho -1}}
\Bigr]^{\frac{1}{\rho}},
\end{eqnarray*}
より,
\[
x=p^{\frac{1}{\rho -1}}\Bigl[{\alpha}p^{\frac{\rho}{\rho -1}}
+\Bigl(\frac{\alpha}{\beta}\Bigr)^{\frac{\rho}{\rho -1}}
q^{\frac{\rho}{\rho -1}}
\Bigr]^{-\frac{1}{\rho}}u,
\]
が,
\begin{eqnarray*}
u&=&\Bigl[{\alpha}\Bigl(\frac{\beta p}{\alpha q}\Bigr)^{\frac{\rho}{\rho -1}}y^{\rho}
+{\beta}y^{\rho}\Bigr]
^{\frac{1}{\rho}}\\
&=&\Bigl[y^{\rho}q^{\frac{-\rho}{\rho -1}}
{\alpha}\Bigl(\frac{\beta p}{\alpha}\Bigr)^{\frac{\rho}{\rho -1}}
+y^{\rho}p^{\frac{-\rho}{\rho -1}}{\beta}q^{\frac{\rho}{\rho -1}}
\Bigr]^{\frac{1}{\rho}}\\
&=&yq^{\frac{-1}{\rho -1}}\Bigl[\Bigl(\frac{\beta}{\alpha}\Bigr)^{\frac{\rho}{\rho -1}}
{\alpha}p^{\frac{\rho}{\rho -1}}
+{\beta}q^{\frac{\rho}{\rho -1}}
\Bigr]^{\frac{1}{\rho}},
\end{eqnarray*}
より,
\[
y=q^{\frac{1}{\rho -1}}\Bigl[\Bigl(\frac{\beta}{\alpha}\Bigr)^{\frac{\rho}{\rho -1}}
{\alpha}p^{\frac{\rho}{\rho -1}}
+{\beta}q^{\frac{\rho}{\rho -1}}
\Bigr]^{-\frac{1}{\rho}}u
\]
が得られる.
ここで,$\displaystyle r={\frac{\rho}{\rho -1}}$とおくと,
\begin{eqnarray*}
\rho &=&\frac{r}{r-1}\\
\rho -1&=&\frac{1}{r-1}\\
\frac{1}{\rho -1}&=&r-1\\
\frac{1}{\rho}&=&\frac{1}{r}-1
\end{eqnarray*}
であることより,
\begin{eqnarray*}
x&=&p^{r-1}\Bigl[{\alpha}p^r
+{\beta}\Bigl(\frac{\alpha}{\beta}\Bigr)^rq^r
\Bigr]^{\frac{1}{r}-1}u,\\
y&=&q^{r-1}\Bigl[{\alpha}\Bigl(\frac{\beta}{\alpha}\Bigr)^rp^r+{\beta}q^r
\Bigr]^{\frac{1}{r}-1}u,
\end{eqnarray*}
となる.したがって,支出関数は
\begin{eqnarray*}
E(p,q,u)&=&px+qy\\
&=&p^{r}\Bigl[{\alpha}p^r
+{\beta}\Bigl(\frac{\alpha}{\beta}\Bigr)^rq^r
\Bigr]^{\frac{1}{r}-1}u
+q^{r}\Bigl[{\alpha}\Bigl(\frac{\beta}{\alpha}\Bigr)^rp^r+{\beta}q^r
\Bigr]^{\frac{1}{r}-1}u\\
&=&p^r\Bigl(\frac{\alpha}{\beta}\Bigr)^{r(\frac{1}{r}-1)}
\Bigl[{\alpha}\Bigl(\frac{\beta}{\alpha}\Bigr)^rp^r+{\beta}q^r
\Bigr]^{\frac{1}{r}-1}u
+q^r\Bigl[{\alpha}\Bigl(\frac{\beta}{\alpha}\Bigr)^rp^r+{\beta}q^r
\Bigr]^{\frac{1}{r}-1}u\\
&=&\Bigl[p^r\Bigl(\frac{\alpha}{\beta}\Bigr)^{r(1-r)}+q^r\Bigr]
\Bigl[{\alpha}\Bigl(\frac{\beta}{\alpha}\Bigr)^rp^r+{\beta}q^r
\Bigr]^{\frac{1}{r}-1}u\\
&=&\Bigl[\frac{\alpha}{\beta}\Bigl(\frac{\beta}{\alpha}\Bigr)p^r+q^r\Bigr]
\Bigl[{\alpha}\Bigl(\frac{\beta}{\alpha}\Bigr)^rp^r+{\beta}q^r
\Bigr]^{\frac{1}{r}-1}u\\
&=&\Bigl[{\frac{1}{\beta}\Bigl({\alpha}}\bigl(\frac{\beta}{\alpha}\bigr)^rp^r
+{\beta}q^r\Bigr)
\Bigr]
\Bigl[{\alpha}\Bigl(\frac{\beta}{\alpha}\Bigr)^rp^r+{\beta}q^r
\Bigr]^{\frac{1}{r}-1}u\\
&=&{\frac{1}{\beta}\Bigl[\Bigl({\alpha}}\bigl(\frac{\beta}{\alpha}\bigr)^rp^r
+{\beta}q^r\Bigr)
\Bigr]^{\frac{1}{r}}u\\
&=&\Bigl[{\alpha}^{1-r}p^r+{\beta}^{1-r}q^r\Bigr]^{\frac{1}{r}}u.
\end{eqnarray*}
【解答終】
【Further Reading】
ディキシット 『経済理論における最適化【第2版】』勁草書房(1997)
この本では$\Bigl[{\alpha}^{1-r}p^r+{\beta}^{1-r}q^r\Bigr]^{\frac{1}{r}}u$の$u$が抜けている.
ふろく(2)応用問題 一覧へ